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Introduction
Humans are exposed to fungi throughout life via inhalation, digestion, and/or traumatic inoculation of  
fungal particles. The vast majority of  these encounters are asymptomatic, and less than 100 of  the estimat-
ed 5 million fungi species are associated with human disease (1) (Table 1 and Figure 1). Fungi can either 
exist as spherical yeast cells (e.g., Cryptoccocus neoformans) or as molds that form branching tubular hyphae 
(e.g., Aspergillus fumigatus). Dimorphic fungi (e.g., Histoplasma capsulatum) grow as molds in the environ-
ment and yeasts in human tissue. Candida albicans grows as yeast cells and pseudohyphae, a hyphal form 
with tapered ends, in human tissue; this morphologic switch is essential for virulence (2).

Fungi were recognized to cause disease during investigations into the scalp dermatophyte infection favus, 
which was widespread in 19th century Europe (3). German physiologist Robert Remak (1815–1865) immersed 
favus skin samples in acetic acid and observed fungal hyphae and conidia (named Trichophyton schönleinii in 
honor of Johann Schönlein, Remak’s mentor). In 1842, Remak injected favus crust–isolated material into his 
forearm and noted growth in the lesions, thereby establishing causality between the fungus and disease.

Several events, including the advent of  myeloablative chemotherapy for neoplasia, glucocorticoids 
and immune modulators for autoimmunity, transplantation for end-organ failure, and the AIDS pan-
demic, contributed to the emergence of  fungal infections in the second half  of  the 20th century. Novel 
pathogenic fungi that pose a threat to humans (e.g., Cryptococcus gattii), amphibians (e.g., Batrachochytri-
um dendrobatidis), and bats (e.g., Pseudogymnoascus destructans) have also been identified (4). In response, 
research in fungal pathogenesis and antifungal immunity has intensified to inform vaccine- and thera-
py-based approaches for mycoses (5). This review focuses on insights gained from animal models and 
patients with primary immune deficiency disorders (PIDDs), but does not cover allergenic or toxin-
mediated fungal disease (6, 7).

Antifungal immunity from the bench: contribution of animal models
This section focuses on antifungal immunity to different yeasts, molds, and dimorphic fungi. Contempo-
rary animal models of  fungal infection are reviewed elsewhere (8).

Fungal recognition and immune activation. The fungal cell wall contains polysaccharide and lipid moi-
eties that activate immune responses (9) (Table 2). The cell wall is exterior to the plasma membrane and 
arranged in layers: the innermost layer typically consists of  chitin, an N-acetylglucosamine polymer; the 
adjacent external layer is formed by immunoreactive β-(1,3) and β-(1,6) glucans, which are concealed by 
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many fungi. H. capsulatum employs an α-glucan layer and the action of  a glucanase (9–11). A. fumigatus 
resting conidia utilize a proteinaceous hydrophobin layer (12), while the hyphal cell wall layer contains 
galactomannan and galactosaminogalactan, the latter of  which conceals inflammatory β-glucan (13, 
14). The C. albicans outer cell wall consists of  glycoproteins that incorporate N- and O-linked mannans 
and induces inflammatory responses via the mannose receptor and TLR-4 (15). C. albicans mannans 
conceal β-glucans as well; the latter are exposed on bud and birth scars during yeast cell division (9). 
The C. neoformans capsule covers the chitinous and β-glucan–rich cell wall layers and largely consists 
of  glucuronoxylomannan and galactoxylomannan (16). Previously published reviews provide in-depth 
discussion of  fungal cell wall architecture (9, 16–18).

At portals of  entry fungal cells encounter and bind to antibodies, complement, and soluble pat-
tern recognition receptors. Collectively, these interactions facilitate signaling responses by membrane-
bound receptors and the induction of  antifungal effector mechanisms (5, 9). In the lung, the collectin 
pentraxin-3 (PTX3) binds to A. fumigatus conidial galactomannan (19) and facilitates complement 
deposition and CD32-dependent conidial uptake by neutrophils (20). Ptx3–/– mice are susceptible to 
respiratory A. fumigatus challenge (19), and a PTX3 polymorphism enhances the vulnerability of  hema-
topoietic cell transplant recipients to invasive aspergillosis (21).

The C-type lectin receptor (CLR) dectin-1 (encoded by Clec7a) binds β-glucans from a variety of  
fungi, including those on C. albicans bud scars and germinating A. fumigatus conidia, and activates sig-
naling responses to Pneumocystis jiroveci, H. capsulatum, Coccidioides posadasii, and Paracoccidioides brasil-
iensis (5, 9, 22–24) (Figure 2). β-Glucan binding displaces regulatory phosphatases CD45 and CD148 
(25), induces SRC-dependent phosphorylation of  the intracellular ITAM-like motif, and recruits the 
SHP-2 phosphatase (26). SYK docks to this scaffold and transduces signals via PKC-δ (27) and the 
VAV family of  GEFs (28) to CARD9, which complexes with BCL10 and MALT1 (29) to activate the 
canonical NF-κB subunits p65 and c-REL (30). Dectin-1 signaling also modulates the noncanonical 
NF-κB subunit RELB through RAF-1–dependent phosphorylation and deacetylation (31). In macro-
phages and dendritic cells (DCs), the CARD9/BCL10/MALT1 complex directs Il1b transcription and 
caspase-1– and caspase-8–dependent IL-1β release (32, 33), in part via the activity of  NRLP3- and 
AIM2-containing inflammasomes (34). Rubicon can disrupt signal transduction and NF-κB activation 
via the CARD9/BCL10/MALT1 complex (35). Dectin-1/SYK/CARD9–dependent cytokines, such 
as TNF, CXCL2, IL-6, IL-23, and IL-1β, promote innate immune activation and Th17 differentiation 
(36). In addition, dectin-1/SYK signaling in DCs induces IFN-β production via IRF5 (37). The role of  
type I IFN signaling in defense against candidiasis remains controversial, with both protective (37) and 
detrimental (38) phenotypes reported.

Dectin-1 signaling regulates ERK (also known as MAP kinase) activity via H-RAS and RAS guanine 
nucleotide–releasing factor 1 (RASGRF1) (39). This pathway regulates macrophage IL-6, IL-1β, and TNF, 
but not IL-12 responses, and is protective during systemic candidiasis (39). c-JUN kinase isoform 1–defi-
cient (JNK1-deficient) mice are resistant to systemic candidiasis (40). Dectin-1–induced JNK1 signaling 
negatively regulates CD23 (encoded by Fcer2) expression via nuclear factor of  activated T cells (NFAT) 
activation. CD23 binds α-mannans and β-glucans and induces the antifungal effector NOS2. Consistent 
with this model, Cd23–/– mice are susceptible to systemic candidiasis (40).

In otherwise nonphagocytic cells, dectin-1 expression promotes phagocytosis of  nonopsonized 
β-glucan particles (5, 9). Bruton’s tyrosine kinase (BTK) and VAV-1 interact with dectin-1 in macrophages 
during C. albicans phagocytosis, a process impaired by genetic loss of  either protein (41). Dectin-1/SYK/
CARD9 signaling in NADPH oxidase activity is controversial, as dectin-1–dependent (24) and –indepen-
dent (42) control of  β2 integrin (CD18) activation and the respiratory burst have been reported in vitro. 
Murine Clec7a –/– and Card9–/– neutrophils display no cell-intrinsic defect in killing A. fumigatus conidia, 
unlike p47phox–/– neutrophils (43). These data can be reconciled if  the major role of  dectin-1/CARD9 is 
to modulate NADPH oxidase and fungal killing via soluble mediators, rather than by cell-intrinsic activa-
tion. β2 integrins and TLR signaling can collaborate with dectin-1 to mount macrophage inflammatory 
responses to H. capsulatum and other fungi (44, 45).

Dectin-2 (encoded by Clec4n) forms a complex with dectin-3 (encoded by Clec4d) to bind Candida 
α-mannans (46, 47) or with mincle (encoded by Clec4e) to bind Malassezia glycolipids (48). Blastomyces der-
matiditis, H. capsulatum, C. posadasii, and A. fumigatus induce dectin-2 signaling (43, 49). As these CLRs lack 
a signaling domain, heterodimeric complexes signal via the ITAM-coupled adaptor FcRγ (9).
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Table 1. Common human fungal diseases and associated PIDDs

Mycosis 
Fungal species 
Most common genera

Morphotype Clinical Syndromes Genes (syndromes) linked to enhanced 
susceptibilityA

Aspergillosis  
Aspergillus spp., A. 
fumigatus, A. flavus, A. niger, 
A. terreus, A. nidulans (in 
CGD)

Mold Pneumonia and systemic disease in immune-compromised 
hosts; allergenic disease (e.g., ABPA) in atopic hosts; cavitary 

disease in setting of structural lung disease; deep tissue 
organ disease (e.g., brain abscess, osteomyelitis) in CGD and 

CARD9-deficient patients

NADPH oxidase (CGD); STAT3 (HIES); 
CARD9 (extrapulmonary aspergillosis); 

GATA2 (MonoMAC syndrome); CD18 
(LAD); ELA2, HAX1 (SCN)

Mucormycosis 
Rhizopus, Mucor and 
Rhizomucor spp.

Mold Pneumonia, sinus, and systemic disease in immune-
compromised hosts and in diabetic ketoacidosis

Fusariosis 
Fusarium oxysporum and F. 
solani

Mold Pneumonia, cutaneous, bloodstream, and systemic disease in 
immune-compromised hosts; fungal keratitis

NADPH oxidase (CGD), STAT1 GOF 
mutations

Dermatophytosis 
Epidermophyton, 
Trichophyton, Microsporum 
spp.

Mold Skin and nail infections (i.e., keratinized tissues), e.g., tinea 
pedis (athlete’s foot), ringworm

NADPH oxidase (CGD); CARD9 (deep 
tissue infections)

Sporotrichosis 
Sporothrix schenkii

Dimorph Lymphocutaneous disease, ascending lymphangitis NADPH oxidase (CGD)

Blastomycosis 
Blastomyces dermatiditis

Dimorph Pneumonia; skin, mucosal, skeletal, and genitourinary 
disease

GATA2 (MonoMAC syndrome)

Histoplasmosis 
H. capsulatum (North 
America), H. dubousii (Africa)

Dimorph 
(intracellular in 
macrophages)

Pneumonia, mediastinal granuloma and fibrosis, 
disseminated histoplasmosis

IL12RB1; IFNGR1; STAT1 GOF 
mutations; STAT3 (HIES); UNC119, 

MAGT1, RAG1 (idiopathic CD4 
lymphopenia); DOCK8 (HIES); CD40 

ligand
Coccidioidomycosis 
C. immitis, C. posadasii

Dimorph Pneumonia, skeletal disease, meningitis IL12RB1; IFNGR1; STAT1 GOF 
mutations; STAT3 (HIES)

Paracoccidioidomycosis  
P. brasiliensis

Dimorph Pneumonia; skin, mucosal, and skeletal disease IL12RB1

Penicilliosis  
Talaromyces marneffei

Dimorph Pulmonary, skin, mucosal, and disseminated disease

Pneumocystosis  
P. jiroveci

Trophozoites 
(asexual) and 
cysts (sexual)

Pneumonia; common AIDS-defining illness CD40 ligand, >30 genes that underlie 
SCID; MHC class II deficiency; NEMO; 

DOCK8 (HIES); CARD11; Wiskott-
Aldrich syndrome

Candidiasis 
C. albicans, C. tropicalis 
C. glabrata, C. krusei, 
C. parapsilosis, C. auris

Dimorph 
Yeast

Thrush, vulvovaginitis; bloodstream and systemic infections 
in immune-compromised patients; AIDS-defining illness; 

deep tissue single organ disease (e.g., kidney or brain abscess, 
osteomyelitis) in CGD and other PIDDs; deep tissue disease 

uncommon in syndromes associated with CMC with the 
exception of CARD9 deficiency

CMC: IL17F; IL17RA; IL17RC; ACT1; 
STK4; IRF8; CARD9; STAT1 GOF 

mutations; STAT3 (HIES); RORC; AIRE; 
anti–IL-17 autoantibodies (thymoma) 

CNS disease: CARD9 
Invasive and deep tissue disease: 
ELA2, HAX1 (SCN), CGD, complete 

MPO deficiency
Cryptococcosis 
C. neoformans, C. gattii

Yeast 
(pigmented, 

encapsulated)

Pneumonia, meningitis; AIDS-defining illness Anti–GM-CSF or –IFN-γ antibodies; 
CD40 ligand; GATA2; IL12R; STAT3 

(HIES)
Chromoblastomycosis  
Fonsecaea pedrosii, and 
others

Yeast 
(pigmented)

Chronic infection of cutaneous and subcutaneous tissues

Eumycetoma 
Scedosporium spp., Madurella 
spp., and others

Molds (pale or 
dark grains)

Chronic infection of cutaneous and subcutaneous tissues; 
Scedosporium spp. associated with bloodstream, pulmonary 

and CNS disease in immune-compromised hosts
AWe did not discuss all listed gene defects associated with mycoses in the text. The reader is referred to references 64 and 65 for a more comprehensive 
discussion and additional links to the primary literature. ABPA, allergic bronchopulmonary aspergillosis; CARD9, caspase recruitment domain–containing 
protein 9; CMC, chronic mucocutaneous candidiasis; CGD, chronic granulomatous disease; CNS, central nervous system; DOCK8, dedicator of cytokinesis 
8; GM-CSF, granulocyte-macrophage colony-stimulating factor; GATA2, GATA-binding protein 2; GOF, gain of function; HIES; hyper-IgE syndrome; LAD; 
leukocyte adhesion deficiency; NEMO, NF-κB essential modulator; PIDDs, primary immune deficiency disorders; SCID; severe combined immunodeficiency; 
SCN; severe combined neutropenia; STAT, signal transducer and activator of transcription.
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Following fungal recognition, the E3 ubiquitin ligase CBLB ubiquitinates dectin-1, dectin-2, and SYK, 
targeting them for degradation (50–52). In systemic candidiasis, Cblb–/– mice exhibit reduced renal fungal 
burden and improved survival due to decreased inflammation-driven tissue damage (50–52). In contrast, 
TRIM62-mediated CARD9 ubiquitination is essential for BCL10 interactions, NF-κB activation, and 
defense against candidiasis (53).

Mincle/SYK/CARD9 signaling mediates responses to Fonsecaea pedrosii, an agent of  chromoblas-
tomycosis (54). Mincle-induced cytokines are insufficient to clear this soft tissue infection, and applica-
tion of  TLR-7 agonist imiquinod to fungal lesions can restore sterilizing immunity (55). In DCs, mincle 
signaling activates the E3 ubiquitin ligase MDM2, in turn suppressing dectin-1– and IRF1-dependent 
Il12a transcription (56). This MDM2-dependent pathway impairs Th1 responses and may contribute to 
the chronicity of  chromoblastomycosis. During murine pneumocystosis and candidiasis, mincle signal-
ing enhances fungal clearance but is dispensable for survival (57, 58).

Loss of  individual CLRs results in variable susceptibility to C. albicans (22, 23) and A. fumigatus (24, 
43), in part due to strain-specific differences in CLR activation, as shown for C. albicans (59). Consistent 
with SYK/CARD9 being central for CLR signal integration, mice with hematopoietic or DC-specific 
Syk deletion or with global CARD9 deficiency are highly susceptible to C. albicans (29, 60) and A. fumig-
atus (43) challenge. CARD9/SYK–dependent susceptibility maps to defective cytokine responses that 
control neutrophil, NK, and T cell trafficking or activation. During systemic candidiasis, DCs secrete 
IL-23 in a SYK-dependent manner, prompting IL-17A–dependent (hereafter referred to as IL-17) NK 

Figure 1. Human fungal diseases. The figure depicts the anatomic sites that are most commonly affected by the fungal genera listed below each organ 
system. At several sites, fungal disease occurs due to inoculation at the site. For example, humans inhale infectious conidia or desiccated fungal cells of 
all genera listed under lungs and respiratory tree. For other sites, such as the liver, spleen, and blood stream, disease is the result of dissemination of the 
indicated fungus from the initial inoculation site. Illustrated by Mao Miyamoto.
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cell release of  GM-CSF, thereby activating candidacidal neutrophils at infection sites (60, 61).
CLR-independent pathways also mediate fungus-induced inflammation. Fungal ligands activate 

TLR1–4, TLR-6, TLR-9, and NOD2 signaling in a variety of  cell types (5, 9). For example, PTX3-opso-
nized A. fumigatus conidia activate TLR-4/MD-2/TRIF–dependent signaling that mediates IL-10 produc-
tion (62). Following internalization, A. fumigatus conidia trigger macrophage TLR-9–, calcineurin-, and 
BTK-dependent TNF release (63); however, humans with NLR or TLR/MyD88 signaling defects do not 
manifest with fungal infections (64, 65). A detailed discussion of  Mendelian defects that do manifest with 
fungal infections follows later in this review.

Fungal killing. Neutrophils rapidly internalize conidia and/or yeast cells and direct the production of  
ROS to the fungal phagosome (66). In macrophages, NADPH oxidase–dependent LC3-associated phago-
cytosis represents a potential clearance mechanism for A. fumigatus conidia (67, 68). Nutritional immunity, 
exemplified by zinc and iron sequestration, is critical for macrophage defense against intracellular H. cap-
sulatum yeast cells (69), against fungal keratitis (70), and in chronic granulomatous disease (CGD) patients 
with defects in NADPH oxidase (71–73).

Fungal hyphae (A. fumigatus) and pseudohyphae (C. albicans) induce NADPH oxidase–dependent neutro-
phil extracellular trap (NET) formation (74), a form of neutrophil programmed cell death termed NETosis. 
NETs contain extracellular nucleic acids, histones, and granular proteins, including calprotectin and PTX3 
(75, 76), and ensnare fungal organisms that are too large for phagolysosomal killing (74). Neutrophil calpro-
tectin, a major NET component, is important for antihyphal host defense during murine A. fumigatus keratitis 
yet dispensable for anticonidial defense following respiratory A. fumigatus challenge (77), illustrating a fungal  

Table 2. Mammalian signaling receptors and cognate fungal ligands and species

C-type lectin receptors: Fungal ligand Fungal speciesA ReferencesB

Dectin-1 (Clec7a) β-Glucans AF, CA, CP, ER, HC, PB, PC (23, 24, 44, 49, 59, 184)
Dectin-2 (Clec4n) α-Mannans, O-linked mannoproteins AF, BD, CA, CP, CG (48, 49, 97, 185)
Dectin-3 (CLECSF8, MCL, Clec4d)C α-Mannans CA (47, 186)
Mincle (Clec4e) α-Mannosyl residues, glyceroglycolipids CA, FP, MS, PC (48, 54, 58)
CD209 (DC-SIGN) Galactomannan, mannans AF, CA (187)
Mannose Receptor N-linked mannans, mannans CA, PC (15, 188)
Toll-like receptors:
TLR-2 α-(1,4)-Glucans CA (189)
TLR-1 and TLR-2 Glucuronoxylomannans CN (190)
TLR-2–TLR-6 Phospholipomannans, glucuronoxylomannans CA 

CN
(191)

TLR-4 O-linked mannans, rhamnomannans CA, SA (15, 189, 192)
TLR-9 Unmethylated DNA AF, CA (63)
NOD-like receptors:
NOD1 Unknown AF (193)
NOD2 Chitin (?) CA (194)
NLRC4 Unknown CA (195)
NLRP3 Unknown AF, CA (34, 196)
Other receptors:
CD14 α-(1,4)-Glucans SA (197)
CD23 (Fcer2a) α-Mannan, β-glucan CA (40)
CD36 CN, CA (198)
CR3 (integrin α2/βM; CD11b/CD18; Mac-1) β-Glucan AF, CA, HC (42, 44, 45, 72, 73)
Galectin-3 β-Mannosides CA (199)
Lactosylceramide (glycosphingolipid) PC (200)
Pentraxin-3 (soluble) Galactomannan AF (19, 62)
ARole in murine survival or fungal clearance. BThe references focus on manuscripts that demonstrate in vivo roles for receptors in murine survival or fungal 
clearance; additional references to the primary literature can be found in references 5 and 9. CDectin-3 can form heterodimeric complexes with dectin-2 or with 
mincle. AF, Aspergillus fumigatus; BD, Blastomyces dermatiditis; CA, Candida albicans; CG, Candida glabrata; CN, Cryptococcus neoformans, CP, Coccidioides 
posadasii; ER, Exserohilum rostratum; FP, Fonsecaea pedroisi; HC, Histoplasma capsulatum; MS, Malassezia spp.; PB, Paracoccidioides brasiliensis; PC, 
Pneumocystis carinii from sp. muris; SA, Scedosporium apiospermium.
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morphotype-specific role in host defense. A. fumigatus hydrophobins and galactosaminogalactan enhance fun-
gal resistance to NETs (78, 79). The contribution of NETs to fungal clearance in vivo remains difficult to quan-
tify, because researchers lack experimental tools that specifically disrupt NETosis in murine models.

Mucosal defense and fungal tissue invasion. At mucosal surfaces, IL-17 is critical for antifungal immunity. 
Innate lymphoid, Th17, and γδ T cells produce IL-17 following C. albicans challenge in the oropharynx 
or skin (80, 81). Skin sensory neurons participate in C. albicans detection and activate dermal DCs via the 
neuropeptide calcitonin-related gene product to direct IL-23–dependent γδ T cell IL-17 release (82). Oral 
epithelial cells represent an important IL-17 signaling target, as mice lacking IL-17–sensing capacity in 
these cells display a phenotype similar to that of  Il17ra–/– mice (83). The IL-17–dependent transcriptional 
response of  oral epithelial cells includes antimicrobial peptides, including β-defensin 3 (DEFB3). Accord-
ingly, Defb3–/– mice are susceptible to oropharyngeal candidiasis (83). In C. albicans–infected kidneys, IL-17–
dependent responses include activation of  the kallikrein/kinin system, which prevents apoptosis of  tubular 
cells (84). Neutrophil recruitment to infected oral tissues is complex, with reports of  IL-17–dependent and 
–independent trafficking pathways (85, 86). One IL-17–independent mechanism involves IL-1α/β–sensing 
oral keratinocytes that regulate neutrophil influx via CXC-chemokine release and indirect control over 
G-CSF–dependent granulopoiesis (87). Thus, mucosal infections induce crosstalk between epithelial and 
hematopoietic cells to regulate innate activation and fungal clearance.

Figure 2. Model of fungus-induced CLR signaling in antifungal defense. At the site of inoculation, particulate fungal polysaccharides bind C-type lectin 
receptors (CLRs) and Fc receptors (FcRs), resulting in SYK activation via ITAM signaling in the receptor tail, the FcRγ signaling adaptor, or integrin receptor 
activation. The ensuing PKCδ and CARD9 activation is critical for caspase-1 and caspase-8 activity, MAP kinase signaling (not shown), NF-κB activation, and 
cytokine production. SYK-dependent PLCγ2 activation is linked to NADPH oxidase assembly and calcineurin-dependent NFAT activation. Dectin/SYK signal-
ing controls IRF5-dependent IFN-γ production. VAV1 and BTK can interact with dectin-1 to mediate phagocytosis of Candida albicans in macrophages. BTK 
may also promote calcineurin activation and the production of NFAT-regulated cytokines. The model depicts fungal killing in the phagosome. Myeloid cell–
derived cytokines promote the differentiation of both Th1 cells and Th17 cells. Th17 and innately derived IL-17 activate epithelial responses that coordinate 
clearance of fungal cells at mucosal surfaces. The asterisks indicate genetic or humoral defects that predispose humans to a spectrum of fungal disease. 
Myeloid and epithelial cells collaborate to regulate CXCR2-dependent neutrophil recruitment to portals of infection. Illustrated by Mao Miyamoto.
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Fungal invasion of  epithelial and endothelial cells contributes to tissue damage and disease dissemina-
tion. During mucormycosis, the endothelial receptor glucose-regulated protein 78 (GRP78) enables Rhizo-
pus oryzae hyphae binding to endothelial cells (88) via spore coat protein surface proteins (CotH), primar-
ily CotH3. Metabolic changes associated with hyperglycemia and diabetic ketoacidosis (DKA) enhance 
endothelial GRP78 expression, resulting in GRP78-dependent fungal tissue invasion (89). The widespread 
expression of  CotH family members among Mucorales and absence from other fungal pathogens may 
explain the unique susceptibility of  patients with DKA to mucormycosis. Consistent with this model, anti-
bodies directed against GRP78 or CotH3 protect mice from mucormycosis (90).

The C. albicans adhesin Als3 mediates binding to biotic and abiotic surfaces, including epithelial and 
endothelial cells, and triggers internalization via E- and N-cadherin (91). The adhesin Hwp1 and the 
heat-shock protein Ssa1 also contribute to this process (92). An Als3p-based vaccine has emerged as a 
promising candidate to prevent mucosal and systemic disease (93) (NIH ClinicalTrials.gov identifiers: 
NCT01926028, NCT02996448). Following epithelial attachment, C. albicans pseudohyphae secrete the 
pore-forming, cytolytic peptide toxin candidalysin that is essential for virulence (94). At the onset of  epi-
thelial invasion, candidalysin activates MAPK signaling and c-FOS activation at sublytic concentrations 
(94). Epithelial activation leads to IL-1α, IL-6, G-CSF, and GM-CSF release, alerting host cells to the 
presence of  invasive pseudohyphae.

A. fumigatus conidia express the lung mucin–binding lectin FleA that promotes lung macrophages to 
internalize conidia (95). Mice challenged with ΔfleA conidia have more severe pneumonia than animals 
challenged with WT conidia. Thus, FleA represents an essential target of  the immune system to clear 
inhaled conidia. A. fumigatus hyphae also invade epithelial and endothelial cells, a property mediated in 
part by the CalA protein (96) and by galactosaminogalactan (14). Although CalA is dispensable for host 
cell adherence, CalA stimulates integrin α5β1–dependent hyphal endocytosis and is required for virulence 
in immunosuppressed mice (96).

Trained immunity and fungal infections. Humans maintain sterilizing antifungal immunity in the lung 
despite daily inhalation of  thousands of  fungal cells; therefore, single-inoculum animal models are limited 
in revealing immunologic responses that arise in response to multiple challenges. Repeated exposure to A. 
fumigatus antigens gives rise to RORγt+IL-17+ neutrophils in response to IL-6 and IL-23 production (97). 
IL-17+ neutrophils express IL-17RC and signal in a paracrine manner to boost fungicidal activity following 
secondary challenge in the eye and lung (97, 98).

Murine Ly6Chi monocytes represent effector cells against C. albicans (99), A. fumigatus (100), and B. 
dermatiditis (101). During repetitive challenges with β-glucans, murine Ly6Chi monocytes and human 
CD14+ monocytes exhibit attributes reminiscent of  immunologic memory, including enhanced respon-
siveness, based on cytokine responses (102). β-Glucan priming induces epigenetic and metabolic chang-
es in monocytes, the latter of  which associates with a shift from oxidative phosphorylation to glycolysis 
via a dectin-1/AKT/mTOR/HIF-1α signaling pathway (103) and increased glutaminolysis (104). In 
macrophages, β-glucan priming partially reverses LPS exposure–associated chromatin modifications, 
specifically the silencing of  proinflammatory genes (105). In humans, a recent study proposes a role for 
STAT1 signaling in eliciting trained immunity, and by extension, in protection against chronic mucocu-
taneous candidiasis (CMC) (106).

Adaptive antifungal immunity. Antibody-mediated immunity to fungal pathogens has been extensive-
ly reported in the literature (107). For example, natural fungal polysaccharide–targeting IgM antibodies 
enhance DC-mediated recognition of  fungal antigen, the development of  Th2 and Th17 responses, and 
B cell isotype class-switch recombination during murine pneumocystosis (108). In a model of  X-linked 
agammaglobulinemia, pulmonary and CNS cryptococcal disease progressed rapidly, in part due to 
IgM-dependent defects in macrophage phagocytosis (109). Although there is significant support for the 
concept that antibody-dependent opsonization and complement activation enhance fungal clearance in 
animal models (107), loss of  antibody-mediated immunity is generally compensated by alternate effec-
tor systems, such as myeloid and CD4+ T cell–mediated immunity. Additionally, humans with humoral 
immune defects are generally not susceptible to fungal disease; however, protective fungus-specific anti-
bodies are being researched as an adjunctive therapy in preclinical models (107). Several groups have 
generated protective antibodies that form the basis for vaccine strategies in murine models of  fungal 
disease and in a phase I trial for recurrent vulvovaginal candidiasis (110–113) (NIH ClinicalTrials.gov 
identifier: NCT01067131).
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In the 1980s and 1990s, the dominant CD4+ T cell–dependent protection model involved the dichot-
omous differentiation of  CD4+ T cells into Th1 and Th2 subsets. More recent studies have shown that 
antibody- or cytokine-mediated disruption of  Th1 immunity or Th2-favoring interventions correlate with 
adverse outcomes in murine fungal infection models (5, 9). The discovery of  Th17 and regulatory T cells 
(Tregs), the development of  CD4+ T cell receptor–transgenic mice (114–116), the identification of  fungal 
epitopes that elicit antigen-specific responses (117–119), and the precise phenotyping of  PIDD patients 
with mycoses have advanced insight into CD4+ T cell–driven antifungal immunity (120).

At the site of  infection, fungal cells and antigens are internalized by tissue-resident DC subsets and 
monocyte-derived cells (Mo-DCs). In the lung, Ly6Chi monocytes and derivative Mo-DCs transport A. 
fumigatus conidia and B. dermatiditis yeast cells to lung-draining lymph nodes (121, 122). In a B. derma-
tiditis vaccine model, fungal protease–dependent cleavage of  CCR2 ligands impedes lung Ly6Chi monocyte 
trafficking and the development of  vaccine protection (123). However, Mo-DCs are not required for direct 
CD4+ T cell priming due to antigen transfer to lymph node–resident DCs (122). Mo-DCs, as well as IRF4-
dependent CD11b+ DCs, instruct fungal antigen–specific Th17 responses following A. fumigatus conidial 
challenge (124, 125). In the oral mucosa, CCR7-dependent transport of  candidal antigens to draining lymph 
nodes results in antigen presentation by FLT3L-dependent migratory DCs and by Mo-DCs, both of  which 
have the capacity to prime antigen-specific CD4+ T cells (116).

In the skin, epidermal Langerhans cells recognize C. albicans yeast cell β-glucan via dectin-1, release 
IL-6, and instruct Th17 cell differentiation. These Th17 cells protect against secondary skin infection, 
but not against secondary systemic challenge (126). When C. albicans pseudophyphae penetrate the epi-
dermis, dermal CD11b–CD103+ DCs drive differentiation of  Th1 cells (126), which protect against sec-
ondary systemic challenge, but not secondary skin challenge (126). Thus, the cellular requirements for 
CD4+ T cell priming and differentiation vary by anatomic site and fungal morphology, and, in most 
cases, involve antigen transfer from migratory DCs and Mo-DCs to lymph node–resident DCs.

During pulmonary A. fumigatus challenge, T helper cell differentiation occurs incrementally. Expression of  
the transcription factor T-bet, which controls Th1 differentiation, is detectable in antigen-specific CD4+ T cells 
in lung-draining lymph nodes and is enhanced by MyD88-dependent signals. In infected airways, MyD88-
independent signals promote further Th1 differentiation and IFN-γ production (114). In this model, dectin-1 
signaling counters Th1 differentiation by limiting innate IL-12p35 and IFN-γ production (124). Vaccine immu-
nity to dimorphic fungi relies primarily on pulmonary Th17 cells that likely facilitate mononuclear phagocyte– 
and neutrophil-dependent killing of these pathogens (127, 128). Recently, researchers identified a fungal cal-
nexin epitope that is widely conserved among ascomycetes (118). Vaccine delivery of fungal calnexin elicited 
calnexin-specific CD4+ T cells that conferred protection against the three North American dimorphic fungal 
pathogens (118). Calnexin represents the most promising candidate for vaccine design against these mycoses.

Protective Th17 responses at mucosal surfaces can be enhanced by Treg-mediated IL-2 consumption, 
which enhances IL-17 and IL-22 release by responding Th17 cells and increases resistance to mucosal fungal 
infection (129). Despite the obligate requirement for IL-17 signaling during systemic candidiasis (61), FOXP3+ 
Treg–mediated potentiation of Th17 responses appears detrimental (130), consistent with the notion that high 
IL-17 levels lead to immunopathology, as described for type I IFN (38) and CCR1 signaling (131).

During pulmonary cryptococcosis, mammalian chitotriosidase digests fungal chitin, thereby stimulating 
lung-resident CD11b+IRF4+ DCs, which in turn promote a Th2-dominant response to virulent serotype A 
strains (119). Compared with WT mice, C. neoformans challenge in chitotriosidase-deficient animals elicited 
dramatically lower antigen-specific Th2 cell numbers and extended murine survival, despite similar lung fungal 
burden (119). These data support a model in which antigen-specific Th2 cells exacerbate cryptococcosis by 
augmenting tissue damage without effecting fungal growth. Consistent with these findings, chitosan-deficient 
(i.e., deacetylated chitin) cryptococcal strains elicit cytokine mediators that promote a Th1-biased response 
(132). Similarly, the chitin content of individual A. fumigatus strains correlates with the magnitude of Th2 
responses and lung eosinophil recruitment (133). The role of eosinophils in fungal clearance remains poorly 
understood, with several recent reports suggesting these cells help mediate fungal clearance (134–136).

Antifungal immunity: lessons from fungal disease–associated Mendelian 
disorders
In the 1970s–1980s, characterization of  two prototypic PIDDs that result from phagocyte oxidative machinery 
defects — CGD, caused by mutations in NADPH oxidase subunits and myeloperoxidase (MPO) deficiency 
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(137, 138) — catalyzed our recognition that phagocyte oxidative cytotoxicity is critical for protection against 
invasive fungal disease in humans. The spectrum of clinical phenotypes of  these disorders highlights the 
fungus-specific dependence on oxidative versus nonoxidative cytotoxic mechanisms for defense. For example, 
pulmonary aspergillosis is the signature fungal infection in CGD (137). Yet, only ~40% of CGD patients 
develop aspergillosis during their lifetime, despite daily inhalation of  ubiquitous conidia. This observation 
indicates that nonoxidative mechanisms compensate in the remainder of  the Aspergillus-exposed patients; 
better understanding of  these mechanisms is an important future research direction (9, 69, 71, 77, 139). Inva-
sive infections by other molds, such as Mucorales and Fusarium, or by commensal Candida yeasts are very 
uncommon (<5%), whereas invasive infections by endemic dimorphic fungi and Cryptococcus, or CMC do not 
develop in CGD (137, 140). In contrast, MPO deficiency is not permissive to infections by inhaled molds, and 
only a minority (<5%) of  MPO-deficient patients develops invasive candidiasis. These clinical observations 
show that human phagocytes differentially depend on their oxidative capacity to effectively control different 
fungal pathogens. Importantly, while both CGD and MPO-deficient patients manifest defective hypochlorous 
acid production within phagocytes (137, 138), they exhibit distinct features in the phenotypic expression of  
fungal disease. The discrepancy in susceptibility to mold infection in these patients may reflect, at least in part, 
a potentially significant contribution of  superoxide anion–dependent K+ influx in activating phagolysosomal 
granule proteases (141), which is defective with NAPDH oxidase, but not MPO, deficiency.

In the 1990s–2000s, the discovery of  PIDDs resulting from alterations of  IL-12/IFN-γ signaling 
uncovered the critical role of  IL-12/IFN-γ–dependent lymphocyte/macrophage crosstalk in control of  
intracellular pathogens, including endemic dimorphic fungi, Cryptococcus, mycobacteria, and Salmonella 
(65). This pathway is dispensable for control of  inhaled molds and mucosal fungal infection in humans. 
Some of  these disorders respond clinically to mechanism-based immunotherapy with IFN-γ or IFN-α 
(142). Similarly, neutralizing IFN-γ and GM-CSF autoantibodies can underlie adult-onset acquired 
immunodeficiency characterized by endemic dimorphic fungal (143) and CNS cryptococcal disease (144). 
Patients with alveolar proteinosis due to impaired GM-CSF signaling develop aspergillosis (145), consis-
tent with murine studies (146).

During the last decade, careful clinical phenotyping combined with next-generation sequencing tech-
nologies revealed the critical balance of  JAK/STAT signaling in human antifungal immunity (147). Patients 
with STAT1 gain-of-function (GOF) mutations and those with hyper-IgE syndrome (Job’s syndrome) due 
to STAT3 loss-of-function (LOF) mutations develop fungal disease with overlapping and distinct features. 
STAT1 GOF mutations lead to disseminated infections by intracellular dimorphic fungi, CMC, and/or 
infections by inhaled molds in the absence of  structural lung disease (65, 148). STAT3 LOF mutations 
also result in CMC, but pulmonary infections by inhaled molds occur as a consequence of  structural lung 
disease caused by prior bacterial lung infections. In this cohort, infections by intracellular dimorphic fungi 
occur very rarely and, when they do, tend to involve the gastrointestinal tract (149). In contrast, LOF 
STAT1 mutations or GOF STAT3 mutations do not cause fungal disease (65).

Mutations in the transcription factor GATA2 result in a protean PIDD (65, 150) that brings together (a) 
susceptibility to bacterial, fungal and viral disease, (b) malignancy, and (c) vascular abnormalities. From a 
fungal disease standpoint, GATA2 haploinsufficiency leads to infections by endemic dimorphic fungi, Cryp-
tococcus, and Aspergillus, but not Candida. GATA2-deficient patients exhibit monocytopenia that, consistent 
with recent murine models, likely contributes to fungal susceptibility (100, 150).

The discovery of  kindreds with CMC that carry mutations in IL17F, IL17RA, IL17RC, and NF-κB 
activator 1 (ACT1), and complementary studies in IL-17–mutant mice discussed above indicate that IL-17 
signaling is indispensable for mucosal, but not systemic, antifungal immunity (64, 65). Patients with IL17F 
or IL17RC mutations only develop CMC, whereas those with IL17RA or ACT1 mutations also manifest 
cutaneous staphylococcal and/or pulmonary bacterial infections, indicating that IL-17E/IL-25 signaling 
may specifically map to bacterial defense at mucosal surfaces (151, 152). CMC susceptibility has also been 
linked to mutations in other genes (64, 65), most of  which either directly or indirectly interfere with Th17 
development and/or responses (Figure 2). These include AIRE deficiency in autoimmune polyendocri-
nopathy-candidiasis-ectodermal dystrophy (APECED) (153), Job’s syndrome in which STAT3 regulates 
RORγt-dependent Th17 development, the various genetic forms of  severe combined immunodeficiency 
disorder (154), and mutations in STAT1, RORC, STK4, IRF8, DOCK8, IKBA, CLEC7A, and CARD9 (64, 65, 
155). A CLEC7A polymorphism is also associated with susceptibility to invasive aspergillosis in hematopoi-
etic cell transplant recipients (156).
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CARD9 deficiency exhibits three distinctive features among Mendelian disorders of  antifungal 
immunity (157). First, a substantial proportion of  CARD9-deficient patients exhibit adult-onset fungal 
disease, in contrast to early childhood onset typical of  other PIDDs. It is unclear whether a different 
threshold of  fungal exposure and/or additional genetic, environmental, or other factors accounts for this 
observation. Second, CARD9 deficiency is the only PIDD in which both mucosal and systemic fungal 
disease develop, and susceptibility is restricted to fungi without concurrent bacterial or viral infections. 
Invasive candidiasis, CMC, invasive phaeohyphomycosis, and superficial and deep-seated dermatophy-
tosis have also been reported (157). In contrast to CARD9, MALT1 or BCL-10 deficiency results in a 
narrower spectrum of  fungal susceptibility, with only mucosal infections reported to date (157). Third, 
CARD9 deficiency strikingly results in infections at anatomical sites that are not typically associated 
with the specific pathogens. For example, CARD9-deficient patients exhibit a predilection for Candida 
meningoencephalitis, without disease in kidney, liver, or spleen, all of  which are commonly affected 
in CARD9-sufficient patients (157, 158). CARD9 is critical for neutrophil recruitment to the Candida-
infected CNS but not for neutrophil recruitment to the Candida-infected kidney or Staphylococcus-infected 
CNS (159). This tropism is mediated by CARD9-dependent production of  CXC chemokines by resi-
dent glial cells and neutrophils in the Candida-infected CNS, while neutrophil-intrinsic chemotaxis and 
effector functions are largely intact in CARD9-deficient humans and mice (159–161). Development of  
CNS and intra-abdominal aspergillosis is another example of  altered tissue tropism in CARD9-deficient 
patients (162) and results from defective CARD9-dependent neutrophil chemoattractant production in 
and neutrophil mobilization to extrapulmonary infection sites. The absence of  pulmonary Aspergillus 
involvement in CARD9 deficiency may be explained by compensatory IL-1R/MyD88–dependent neu-
trophil lung recruitment (161, 163). Collectively, these human observations have led to our appreciation 
that CARD9 appears to mediate fungus-, cell type–, and organ-specific neutrophil recruitment during 
invasive fungal infection.

GM-CSF and G-CSF were reported to improve the outcome of  a small number of  CARD9-hypo-
morphic patients with CNS candidiasis (164). In this cohort, mutant CARD9 was impaired in its ability to 
complex with RASGRF1, but not with BCL10 and MALT1 (165). The mechanism by which these cyto-
kines bypass the CARD9-dependent immune defect in this cohort and the generalizability of  this protec-
tion in other CARD9-deficient patients remain to be elucidated.

Antifungal immunity and the study of the mycobiome
While commensal fungi have been noted in humans and mice for over five decades, lack of  culture-indepen-
dent methods, delay in developing high-throughput rDNA sequencing methods, and paucity of  annotated 
reference databases to classify fungal rDNA amplicons delayed characterization of  endogenous fungal 
communities, termed the mycobiota (166, 167). Although fungi comprise less than 1% of  total microbial 
rDNA sequences at different anatomic sites, the size of  fungal cells (~3–10 μm diameter for most yeast 
cells, 2–5 μm diameter for typical mold conidia, and 10 to hundreds μm length for hyphae, compared with 
< 1 μm diameter for bacterial cells) suggests that fungal rDNA quantification underestimates fungal bio-
mass in the microbiota. In the past five years, researchers have analyzed endogenous fungal communities in 
the oral cavity, gastrointestinal tract, skin, and mucosal sites in healthy and diseased individuals (168–172). 
In most studies, between 15 and 70 fungal genera have been identified, with Malassezia spp. predominant in 
the skin and Candida spp. predominant in the intestine. Recent work has defined mechanisms of  Candida 
colonization resistance by intestinal anaerobic bacteria (173).

Our understanding of  the reciprocal interplay between endogenous fungal communities and anti-
fungal immunity remains limited. Despite high-quality studies that point to a central role for IL-17 
in mucosal antifungal immunity, it remains unclear whether IL-17 controls the composition or diver-
sity of  commensal fungi. Administration of  secukinumab, an IL-17–neutralizing Ab, in patients with 
Crohn’s disease increased the rate of  fungal infections, consistent with IL-17 directing mucosal antifun-
gal immunity (174).

Recent work has examined dectin-1 in shaping endogenous fungal communities and mycobiota-trig-
gered immune responses in the gut. Clec7a–/– mice developed intestinal inflammation and Candida and 
Trichosporon spp. overgrowth in the gut (168). In turn, Clec7a–/– mice were unable to control Candida during 
dextran sulfate sodium–induced colitis and benefited from fluconazole therapy. In the absence of  commen-
sal Candida, Clec7a–/– mice were more resistant to colitis and exhibited a reduction in colonic antimicrobial 
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peptides that target Gram-positive bacteria, leading to an increase in commensal Lactobacillus murinus bacte-
ria, Treg expansion, and resistance to colitis (175). Colonization of  Clec7a–/– mice with C. tropicalis reversed 
these effects and promoted intestinal inflammation. These findings suggest that dectin-1 signaling indirectly 
influences the intestinal bacterial microbiota. In humans, a two-marker CLEC7A haplotype is associated 
with treatment-refractory ulcerative colitis (168). Another study identified a negative correlation between a 
CLEC7A single nucleotide polymorphism (SNP) and Malassezia sympodialis abundance in the gut of  inflam-
matory bowel disease (IBD) patients, though no additional (positive or negative) correlations with other 
fungi were reported, likely due to the small cohort size (176). These studies highlight a protective role for 
dectin-1 in intestinal mycobiota control and antifungal immunity.

Dectin-3 was recently reported to contribute to control of  intestinal Candida and colitis. Intestinal C. 
tropicalis overgrowth in Clec4d–/– mice was accompanied by a decrease in Th17 cells, impaired macrophage 
fungal phagocytosis, and defective intestinal epithelial cell barrier function (177). Consistent with these 
findings, antifungal treatment of  Clec4d–/– mice reduced C. tropicalis burden and ameliorated colitis.

CARD9 has also been implicated in IBD pathogenesis, as a nonsynonymous SNP in the CARD9-cod-
ing region strongly associates with IBD risk (178). In experimental colitis models, CARD9 signaling can 
be protective against fungi that contact the intestinal mucosa during colitis. Furthermore, antifungal drugs 
partially ameliorate intestinal inflammation in this context (179). Analysis of  the intestinal microbiota of  
Card9–/– mice revealed alteration in fungal and bacterial communities compared with WT animals. The 
intestinal microbiota in Card9–/– mice lacked tryptophan-metabolizing bacteria and did not produce aryl 
hydrocarbon receptor ligands (180). As a result, Card9–/– mice showed defective expression of  Il22 and anti-
microbial peptide–encoding genes Reg3g and Reg3b. Altogether, these findings suggest CARD9 may dually 
control fungal and bacterial populations in the gut.

Immunologic effects of  intestinal fungi extend beyond the gut. In a house dust mite–induced airway 
allergy model, disruption of  the gut fungal community with antifungal drugs increased disease severity 
(181). Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi increased in abundance during antifungal 
drug–induced fungal dysbiosis, and intestinal supplementation with these strains replicated the detrimental 
effects of  antifungal drugs on lung allergy (181). Similarly, antibiotic-induced fungal overgrowth exacerbat-
ed papain-induced lung allergy by promoting intestinal Candida overgrowth (182). This phenomenon, first 
demonstrated with C. albicans (183), is recapitulated by multiple Candida species and is mediated in part by 
eicosanoids (182). Thus, there is a complex interplay between endogenous fungal communities and innate 
immune tone and responses, both at local and distant sites.

Conclusions and future perspectives
The field of  antifungal immunity has rapidly advanced in the past decade, a period marked by the dissec-
tion of  fungus-specific innate and adaptive immune responses and convergence of  human clinical and ani-
mal model data. The advances during this era are exemplified by insights into the pivotal role of  dectin-1/
CARD9 and IL-17 pathways in antifungal immunity. The discovery of  β-glucan–induced trained immunity 
and conserved sterilizing immunity-mediating epitopes lays the foundation for clinical trials to test vaccine 
protection against multiple fungal genera and species. Important areas of  future research include eluci-
dation of  the role of  epithelial surfaces in fungal virulence and antifungal defense and the intercellular 
crosstalk underlying innate and adaptive antifungal immunity. It is likely that additional fungal recognition 
receptors and response pathways remain to be discovered, both in animal models and in human genetic 
studies. How the composition, diversity, and metabolism of  endogenous fungal communities contribute to 
immune homeostasis and to inflammatory disorders remains largely unexplored, yet are central for deci-
phering the contribution of  fungi to diverse states of  human health and disease.
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